skip to main content


Search for: All records

Creators/Authors contains: "Streicher, Jeffrey W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. O'Connell, Mary (Ed.)
    Abstract The data available for reconstructing molecular phylogenies have become wildly disparate. Phylogenomic studies can generate data for thousands of genetic markers for dozens of species, but for hundreds of other taxa, data may be available from only a few genes. Can these two types of data be integrated to combine the advantages of both, addressing the relationships of hundreds of species with thousands of genes? Here, we show that this is possible, using data from frogs. We generated a phylogenomic data set for 138 ingroup species and 3,784 nuclear markers (ultraconserved elements [UCEs]), including new UCE data from 70 species. We also assembled a supermatrix data set, including data from 97% of frog genera (441 total), with 1–307 genes per taxon. We then produced a combined phylogenomic–supermatrix data set (a “gigamatrix”) containing 441 ingroup taxa and 4,091 markers but with 86% missing data overall. Likelihood analysis of the gigamatrix yielded a generally well-supported tree among families, largely consistent with trees from the phylogenomic data alone. All terminal taxa were placed in the expected families, even though 42.5% of these taxa each had >99.5% missing data and 70.2% had >90% missing data. Our results show that missing data need not be an impediment to successfully combining very large phylogenomic and supermatrix data sets, and they open the door to new studies that simultaneously maximize sampling of genes and taxa. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. The shape and relative size of an ocular lens affect the focal length of the eye, with consequences for visual acuity and sensitivity. Lenses are typically spherical in aquatic animals with camera-type eyes and axially flattened in terrestrial species to facilitate vision in optical media with different refractive indices. Frogs and toads (Amphibia: Anura) are ecologically diverse, with many species shifting from aquatic to terrestrial ecologies during metamorphosis. We quantified lens shape and relative size using 179 micro X-ray computed tomography scans of 126 biphasic anuran species and tested for correlations with life stage, environmental transitions, adult habits and adult activity patterns. Across broad phylogenetic diversity, tadpole lenses are more spherical than those of adults. Biphasic species with aquatic larvae and terrestrial adults typically undergo ontogenetic changes in lens shape, whereas species that remain aquatic as adults tend to retain more spherical lenses after metamorphosis. Further, adult lens shape is influenced by adult habit; notably, fossorial adults tend to retain spherical lenses following metamorphosis. Finally, lens size relative to eye size is smaller in aquatic and semiaquatic species than other adult ecologies. Our study demonstrates how ecology shapes visual systems, and the power of non-invasive imaging of museum specimens for studying sensory evolution. 
    more » « less
  3. Abstract Pupil constriction has important functional consequences for animal vision, yet the evolutionary mechanisms underlying diverse pupil sizes and shapes are poorly understood. We aimed to quantify the diversity and evolution of pupil shapes among amphibians and to test for potential correlations to ecology based on functional hypotheses. Using photographs, we surveyed pupil shape across adults of 1294 amphibian species, 74 families and three orders, and additionally for larval stages for all families of frogs and salamanders with a biphasic ontogeny. For amphibians with a biphasic life history, pupil shape changed in many species that occupy distinct habitats before and after metamorphosis. In addition, non-elongated (circular or diamond) constricted pupils were associated with species inhabiting aquatic or underground environments, and elongated pupils (with vertical or horizontal long axes) were more common in species with larger absolute eye sizes. We propose that amphibians provide a valuable group within which to explore the anatomical, physiological, optical and ecological mechanisms underlying the evolution of pupil shape. 
    more » « less
  4. Abstract Background

    Differences in morphology, ecology, and behavior through ontogeny can result in opposing selective pressures at different life stages. Most animals, however, transition through two or more distinct phenotypic phases, which is hypothesized to allow each life stage to adapt more freely to its ecological niche. How this applies to sensory systems, and in particular how sensory systems adapt across life stages at the molecular level, is not well understood. Here, we used whole-eye transcriptomes to investigate differences in gene expression between tadpole and juvenile southern leopard frogs (Lithobates sphenocephalus), which rely on vision in aquatic and terrestrial light environments, respectively. Because visual physiology changes with light levels, we also tested the effect of light and dark exposure.

    Results

    We found 42% of genes were differentially expressed in the eyes of tadpoles versus juveniles and 5% for light/dark exposure. Analyses targeting a curated subset of visual genes revealed significant differential expression of genes that control aspects of visual function and development, including spectral sensitivity and lens composition. Finally, microspectrophotometry of photoreceptors confirmed shifts in spectral sensitivity predicted by the expression results, consistent with adaptation to distinct light environments.

    Conclusions

    Overall, we identified extensive expression-level differences in the eyes of tadpoles and juveniles related to observed morphological and physiological changes through metamorphosis and corresponding adaptive shifts to improve vision in the distinct aquatic and terrestrial light environments these frogs inhabit during their life cycle. More broadly, these results suggest that decoupling of gene expression can mediate the opposing selection pressures experienced by organisms with complex life cycles that inhabit different environmental conditions throughout ontogeny.

     
    more » « less
  5. Free, publicly-accessible full text available November 22, 2024
  6. Abstract

    The spectral characteristics of vertebrate ocular lenses affect the image of the world that is projected onto the retina, and thus help shape diverse visual capabilities. Here, we tested whether amphibian lens transmission is driven by adaptation to diurnal activity (bright light) and/or scansorial habits (complex visual environments).

    Spectral transmission through the lenses of 79 species of frogs and six species of salamanders was measured, and data for 29 additional frog species compiled from published literature. Phylogenetic comparative methods were used to test ecological explanations of variation in lens transmission and to test for selection across traits.

    Lenses of diurnal (day‐active) and scansorial (climbing) frogs transmitted significantly less shortwave light than those of non‐diurnal or non‐scansorial amphibians, and evolutionary modelling suggested that these differences have resulted from differential selection.

    The presence of shortwave‐transparent lenses was common among the sampled amphibians, which implies that many are sensitive to shortwave light to some degree even in the absence of visual pigments maximally sensitive in the UV. This suggests that shortwave light, including UV, could play an important role in amphibian behaviour and ecology.

    Shortwave‐absorbing lens pigments likely provide higher visual acuity to diurnally active frogs of multiple ecologies and to nocturnally active scansorial frogs. This new mechanistic understanding of amphibian visual systems suggests that shortwave‐filtering lenses are adaptive not only in daylight conditions but also in those scotopic conditions where high acuity is advantageous.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  7. Abstract

    Around the world, many species are confined to “Sky Islands,” with different populations in isolated patches of montane habitat. How does this pattern arise? One scenario is that montane species were widespread in lowlands when climates were cooler, and were isolated by local extinction caused by warming conditions. This scenario implies that many montane species may be highly susceptible to anthropogenic warming. Here, we test this scenario in a montane lizard (Sceloporus jarrovii) from the Madrean Sky Islands of southeastern Arizona. We combined data from field surveys, climate, population genomics, and physiology. Overall, our results support the hypothesis that this species' current distribution is explained by local extinction caused by past climate change. However, our results for this species differ from simple expectations in several ways: (a) their absence at lower elevations is related to warm winter temperatures, not hot summer temperatures; (b) they appear to exclude a low‐elevation congener from higher elevations, not the converse; (c) they are apparently absent from many climatically suitable but low mountain ranges, seemingly “pushed off the top” by climates even warmer than those today; (d) despite the potential for dispersal among ranges during recent glacial periods (~18,000 years ago), populations in different ranges diverged ~4.5–0.5 million years ago and remained largely distinct; and (e) body temperatures are inversely related to climatic temperatures among sites. These results may have implications for many other Sky Island systems. More broadly, we suggest that Sky Island species may be relevant for predicting responses to future warming.

     
    more » « less